We use cookies to improve your browsing experience. By continuing to use our site, you accept our cookie policy.

close Close Cookie Notification
Instron
  • Back
  • Home
  • Products
    Testing Systems
    Universal Testing Systems
    Structural Durability
    Automated Testing Systems
    Dynamic and Fatigue Testing Systems
    Crash Simulation
    Torsion Testers
    Rheometers & Melt Flow Testers
    Impact Drop Towers & Pendulums
    HDT & Vicat
    Out of Production Systems
    Accessories
    Software
    Load Cells
    Peel, Friction, Puncture
    Environmental Chambers and Furnaces
    Tensile Grips
    Flex Fixtures
    Compression Platens
    Biomedical Systems & Accessories
    Extensometers
    Composite Fixtures
    Microelectronic Fixtures
    Specimen Measuring and Preparation
    All Accessories
    Accessories Catalog
  • Industry Solutions
    Search by Material Search by Standard Search by Test Type
    Industries
    Automotive
    Biomedical
    Electronics
    Materials
    Composites
    Metals
    Plastics
  • Service and Support
    Instron Connect Product Life Cycle Service Success Stories
    Services
    Calibration and Verification
    Instron Implementation Assistance
    Installation & Relocation
    Training
    Contact Training Department
    [NEW] Virtual Training
    Online eLearning
    Onsite Training at your Facility
    Factory Training
    Regional Training
    Tech Support
    FAQs
    Software Update Services
    Resources
    Manuals
    Serial Number Locator
  • Our Company
    Careers Press Room Subscribe to Our Newsletters
    About Us
    Our History
    Locations
    Accreditations & Certificates
    Resources
    Glossary
    Test Types
    Newsletters
    Literature Library
    News
    How To
    Webinars
    Case Studies
  • Contact Us
  • North America
Testing Solutions » By Test Type » Rheology » ISO 11443 & ASTM D3835

ISO 11443 and ASTM D3835 Tests to Study Polymer Degradation

Specimen

  • Biomaterial
  • Pellets
  • Powder
  • high-performance polymer

Business Sector

  • Packaging
  • Biomedical/Medical/Healthcare
  • Consumer/Industrial Products
  • Contract Testing Services

Test Types

  • Rheology

Standard

  • ISO 11443
  • ASTM D3835

Materials

  • Plastics
  • Rubbers/Elastomers
  • Biomaterials
Contact usView Accessories Catalog
VisualRHEO - Thermal Degradation test
  • VisualRHEO - Thermal Degradation test
  • Description
  • Literature

Thermal degradation of polymers corresponds to deterioration at a molecular level, for example as a result of (over-)heating. Polymer degradation is normally undesirable since related to the loss of properties in the finished product. Some of the recently developed thermoplastics, used as neat or reinforced high-performance materials, are suitable for high-temperature applications, but they are also exposed to high temperatures during compounding and molding processes. Therefore, they're highly sensitive to processing conditions and may undergo thermal degradation before becoming the finished product. This applies for example to LCP (liquid-crystal polymers). One of the key parameters when processing this type of materials is their degradation time and temperature.

How long can a polymer withstand given processing conditions in terms of working temperature and shear rate? To answer this question, a standard rheological test is not enough. With Instron-CEAST capillary rheometers and related Visual RHEO software, a further analysis is possible by performing a Thermal Degradation test. Setting a working temperature and one shear rate applied over a range of time, viscosity is measured as a function of time. Thanks to this type of test, it's possible to quantify the change in viscosity (typically a decrease) of the material during processing applications.

A raw material producer interested in new R&D and Quality Control procedures asked us to test their LCP samples at a high processing temperature. The samples were previously dried in a vacuum oven, then tested at 350°C (662°F) by using a CEAST SR20 capillary rheometer. The thermal degradation test was performed for 15 minutes at a fixed shear rate. Viscosity obtained from experimental data was plotted against time. Viscosity values at selected time intervals were determined using the fitted curve of viscosity vs time. Such values can be used as a reference value to grade different samples. For the specific sample tested in our lab, a loss in viscosity of about 10% was observed, comparing data at 5 and at 10 minutes after loading the sample in the heated barrel of the rheometer.

CEAST SmartRHEO Series: Capillary Rheometer Systems

Thermoplastic materials are processed as fluids under the effect of temperature and pressure. The ability of plastics to be formed into a wide variety of shapes, by the common plastics conversion processes, has a fundamental importance in polymer science and application. The innovative Instron® line of CEAST SmartRHEO Series of Capillary Rheometer systems are designed for an accurate investigation of the rheological properties of polymeric materials.

  • Products
  • 9/22/2014
  • 3.5 MB

Region Selector

Dismiss Region Selector

Americas

  • North America
  • Brasil
  • South America

All Other Countries

  • Global Site

Europe

  • France
  • Deutschland
  • Italia
  • Polska
  • España
  • Türkçe
  • United Kingdom

Asia Pacific

  • 中国
  • India
  • 日本
  • 대한민국
  • 台灣
  • ประเทศไทย
Instron Logo White
CONTACT INFORMATION

825 University Ave
Norwood, MA,
02062-2643, US

Sales: +1 800 564 8378

Service: +1 800 473 7838

General: +1 800 877 6674

HELPFUL LINKS
  • Testing Systems
  • Software
  • Accessories
  • Catalog
  • Glossary
  • Library
  • Testing Solutions
  • Newsletters
  • Webinars
  • Case Studies
  • Events
  • Careers
Policies / Legal
  • Privacy and Cookies Policy
  • Terms of Use
  • Accessibility
  • Export Control
  • Data Notice GDPR
CONNECT WITH US
SIGN UP FOR OUR NEWSLETTER
EMAIL ADDRESS
© Illinois Tool Works Inc. All rights reserved.
[email protected]
  • Privacy and Cookies Policy
  • Terms of Use
  • Accessibility
  • Export Control
  • Data Notice GDPR