CEAST 9000 Series  Pendulum Impact Systems
CEAST 9000 Series
Pendulum Impact Systems
Impact resilience is one of the most important properties and cost-effective evaluations for material producers, both with respect to product development and quality control. As components could fail at stress levels well below the critical fracture stress, accurate determination of impact damage propagation is necessary. With the combined experience of CEAST, Instron® has more than 50 years experience in designing pendulum impact testing systems.

---

**What are you testing?**
The CEAST 9000 Series is designed to perform your Charpy, Izod, Tensile Impact, and Dynstat tests on a wide range of samples, from bars/dumbbell to pipes, in accordance with specific standards.

---

**What is your expected resilience?**
It's critical to determine the energy value necessary to break the specimen under certain conditions, such as specimen size, notch shape, and hammer impact energy.

---

**Notching your Specimens**
Accurate notching is key for pendulum impact testing. Instron® has solutions to meet your requirements.

---

**Will you perform tests at different temperatures?**
When choosing a pendulum impact system, comprehensive impact characterization with tests at different temperatures can be important for a material application.

---

**What result do you need?**
From quality control on resilience results to automated result calculation and visual curve displays, pendulum impact systems can be equipped with instrumentation to fit your needs.
This 3-point bend test that requires a standard notched or unnotched bar is impacted on either the wide or narrow face of its cross-section. The energy required to break the specimen is recorded and the subsequent impact strength is calculated. Specimen and fixture dimensions, impact speed, and hammer dimensions are all defined in the test standard being followed, including ISO 179, ASTM D6110, DIN 53453, DIN 53753, and BS 7413. Metals can be tested according to DIN 50115 and ASTM E23 standards. Hammer energies are available from 0.5 - 50 J (0.37 - 36.9 ft-lbs). The Charpy vice can be fitted with alignment devices for notched, unnotched, and double notched specimens in either the edgewise or flatwise orientation.

Scientific research on the material of pipes or the examination of pipe sections and tubing impact strength are suitable to yield information on the fracture behavior under service conditions. According to the ISO 7628 and ISO 9854, either complete segments or small sections of pipes tested on a pendulum in a 3-point bend configuration similar to the Charpy tests. Sample diameter dimensions up to 25 mm (0.98 in) can be tested with hammer energies of 7.5 - 15 J (5.6 - 11.1 ft-lbs) or 50 J (36.9 ft-lbs), as defined in the ISO standards.

Charpy

Pipe Testing
Tensile impact tests are conducted on materials that are either too thin or exhibit a high elongation before fracture. Hammer geometry, impact energy, specimen shapes, and dimensions are defined in test standards such as ISO 8256 Method A, ISO 8256 Method B, and ASTM D1822. The specimen is either held in the stationary anvil (ISO 8256 Method A) or attached directly to the pendulum hammer (ISO 8256 Method B and ASTM D1822). Hammer energies are available from 0.5 - 50 J (0.37 - 36.9 ft-lbs) depending on the type of the test. The Tensile Impact vice can be fitted in the crosshead with an optional device to ensure specimen alignment.

Izod

For the Izod test, the specimen is impacted in a cantilevered position with the fixed end clamped into the vice. This testing method generates a more severe stress test than the Charpy mode. Energy required to break the specimen is recorded and the subsequent impact strength calculated. Specimen dimensions, hammer geometry, and impact speed are defined by the test standards, the most common of which are ISO 180, ASTM D256, and ASTM D4812. To more accurately adjust and control the clamping force, the Izod vice can be used with a torque wrench or fitted with a foot-operated pneumatic clamping system. It may be necessary to control the clamping force.
Impact Testing is all About Energy

How much energy does it take to fully break a specimen?
How little energy does it take to begin a failure mode in the specimen?
How much energy did the specimen absorb during impact?

The CEAST 9000 Series tabletop pendulums offer impact energies up to 50 J with a range of options available from basic manual testers to semi-automatic systems that include pneumatic release of the hammer and motorized hammer re-positioning.

CEAST 9050 | Manual Model
Energy Range: 0.5 - 50 J (0.37 - 36.9 ft-lb)
Hammer Positioning: Manual
Hammer Release: Manual (pneumatic optional)
Braking Mechanism: Manual
Energy is equivalent to the hammer’s momentum per difference between impact and starting angle

\[ E = m \cdot g \cdot L \ (\cos \alpha_i - \cos \alpha_0) \]

The greater the mass the higher the impact energy. The lighter the mass the lower the impact energy. Our pendulum systems use hammer energies ranging from 0.5 - 50 J (0.37 - 36.9 ft-lbs) and velocities from 1 - 3.80 m/s (3.2 - 12.4 ft/s).

Regardless of your energy requirements, we have the system that meets your needs.

**CEAST 9050 | Motorized Model**

- Energy Range: 0.5 - 50 J (0.37 - 36.9 ft-lb)
- Hammer Positioning: Motorized
- Hammer Release: Pneumatic
- Braking Mechanism: Pneumatic
Notching Your Specimens

Proper preparation of the specimen is a critical process for accurate material characterization. An appropriate preparation of the specimen, as well as an adequate notching procedure affects the final test results, generating reliable outcomes in the finish product performances. This is accomplished by several specimen preparation techniques, making them particularly suitable to select the most appropriate material and failure results analysis.

Why is the Notch Required?
• Notching of the specimen drastically reduces the energy loss due to the deformation
• It provides a stress concentration area which promotes a brittle rather than a ductile failure.

Why is accurate notch preparation important?
The notch properties are effected by:
• A slight variation in the radius and depth affects the impact strength results;
• Cutting speed, sharpness of the knife, pass depth, quality of notching machine;

Knives
The notching machines use interchangeable knives and are available to meet the following standards:

ISO 179  |  ASTM D256
ISO 180  |  ASTM D6110
ISO 8256 |  DIN 53435
BS 2782-359 | DIN 53453

Manual and Motorized Notching Machines
• The manual and motorized Notching Machines are designed to notch thermoplastic and reinforced thermoplastic specimens
• A notch, with dimension according to the requirement of the main international standards, is obtained by means of a constant profile knife with an alternating linear movement
• Choice of analog or digital depth measurement

Manual Model
Manual knife movement, speed and cutting depth
Up to 18 m/min cutting speed
Analog or digital feed measurement
Up to 4 specimens notched simultaneously

Motorized Model
Motorized knife movement and speed
Manual cutting depth
Up to 12-42 m/min cutting speed
Analog or digital feed measurement
Up to 10 specimens notched simultaneously

Notching Your Specimens

Proper preparation of the specimen is a critical process for accurate material characterization. An appropriate preparation of the specimen, as well as an adequate notching procedure affects the final test results, generating reliable outcomes in the finish product performances. This is accomplished by several specimen preparation techniques, making them particularly suitable to select the most appropriate material and failure results analysis.

Why is the Notch Required?
• Notching of the specimen drastically reduces the energy loss due to the deformation
• It provides a stress concentration area which promotes a brittle rather than a ductile failure.

Why is accurate notch preparation important?
The notch properties are effected by:
• A slight variation in the radius and depth affects the impact strength results;
• Cutting speed, sharpness of the knife, pass depth, quality of notching machine;

Knives
The notching machines use interchangeable knives and are available to meet the following standards:

ISO 179  |  ASTM D256
ISO 180  |  ASTM D6110
ISO 8256 |  DIN 53435
BS 2782-359 | DIN 53453

Manual and Motorized Notching Machines
• The manual and motorized Notching Machines are designed to notch thermoplastic and reinforced thermoplastic specimens
• A notch, with dimension according to the requirement of the main international standards, is obtained by means of a constant profile knife with an alternating linear movement
• Choice of analog or digital depth measurement

Manual Model
Manual knife movement, speed and cutting depth
Up to 18 m/min cutting speed
Analog or digital feed measurement
Up to 4 specimens notched simultaneously

Motorized Model
Motorized knife movement and speed
Manual cutting depth
Up to 12-42 m/min cutting speed
Analog or digital feed measurement
Up to 10 specimens notched simultaneously
CEAST AN50 – Automatic Notching Machine
The CEAST AN50 is designed for laboratories which need to perform a large number of impact tests. Up to 50 specimens can be notched in a single cycle with the key parameters stored for later use. The optional knife cooling system, double notch loader and an adjustable cutting speed allow for consistent time saving and accurate notching operations at the same time.

Features
Programmable motorized knife movement and speed from 1 to 21m/min
Single pass depth, programmable from 0.01 to 0.25mm
• Up to 50 specimens notched simultaneously
• Optional slicing device for cutting dumb-bell specimens to a rectangular shape
• Optional knife cooling system
• Option to double notch specimens for Charpy or Tensile Impact applications
CEAST 9050

The CEAST 9050 is an advanced pendulum tester that performs uninstrumented to semi-automatic instrumented tests. Hammer energies range from 0.5 - 50 J (0.37 - 36.9 ft-lbs) and are available for Charpy, Izod, Tensile Impact, Dynstat, and Pipe testing standards.

Standard features include:
- Monolithic cast iron frame
- Intuitive touch panel operation
- Automatic hammer identification and verification
- Angular encoder measuring to 0.05° resolution
- Quick-change hammers and specimen supports
- Hammer disc brake system

Optional features include:
- Increased height safety enclosure for Manual Model
- Slip ring and Trigger for instrumented hammer data acquisition
- Accessories to facilitate operations

Tests to the following standards:
ISO 179  ASTM D6110  DIN 53453
ISO 180  ASTM D256  DIN 53753
ISO 8256  ASTM D1822  DIN 50115
ISO 9854  ASTM E23*
ISO 7628  BS 7413

*For indirect verification to ASTM E23 only low energy reference specimens may be used.

Manual Model
The CEAST 9050 manual model has manual hammer repositioning and disc braking. The hammer release has a two-handed operation that is standard but can be specified as pneumatic.

Features

Standard Safety Guards
A fully protective safety guard on both sides of any pendulum version allows safe operation according to the compulsory CE directive.

Hammer Brake System
The hammer disk brake is characterized by a double braking surface that assures high-braking torque with low effort and smooth operation, even for the heaviest hammers. The brake is manually operated on the Manual Model or pneumatically operated in the Motorized Model.

Hammer Angle Measurement
Using a non-contacting magnetic encoder allows for virtually zero friction and a resolution of 0.05°.

Hammer Identification System
This system automatically recognizes the mounted hammer and retrieves all the relevant data (code, test standard, nominal energy, and impact speed) from the internal database. Repetitive data input and the risk of error is completely eliminated.
Motorized Model
The CEAST 9050 motorized model is equipped with a pneumatically operated hammer release and disc braking system that is standard. The hammer repositioning eases use and increase the output in tests. A data acquisition trigger is included.

Touch Panel
A high-resolution 6.5-inch color display with touch-screen technology allows the most flexible and intuitive use of the instrument.

Embedded-PC Technology
Allows an Ethernet connection to PC Networks (LAN), data exchange through a removable USB stick, and direct printing on standard USB printers

Quick Change Hammers
Equipped with an ergonomic quick-change mechanism, the hammers can be easily changed without the use of tools or screws and the innovative wedge system assures a firm fixing.

Quick Change Supports and Fixtures
Through an ergonomic fixing system, vices for all test types, can be easily and quickly changed and positioned.
Hammers

This innovative hammer line evolved from two primary needs: accuracy and rigidity. The patented* hammer structure, machined from one piece of metal alloy plates, ensures incomparable rigidity, a solid connection to the encoder shaft, and negligible vibrations. Furthermore, the flattened shape minimizes energy lost due to wind friction.

3D CAD design and Finite Element Modeling (FEM) calculations have been employed for the optimal arrangement of mass, position of the center of gravity, and reduced length. Due to this solid design the manufacturing accuracy is by far the best with respect to traditional hammers made of several assembled parts.

Each hammer is equipped with a system that allows fine adjustments of the reduced length, of its weight at 90°, and of its vertical position during the calibration process.

The auto-recognition is the most innovative feature of the hammer and ensures no operator error. This system consists of three pins that are positioned on the hammer and are read by the photocell system of the instrument. The hammer is recognized during calibration and throughout the test.

*Covered by US Pat. No. 7726173, owned by Illinois Tool Works Inc.

To view our range of accessories please visit: www.instron.com/accessories
Touch-Screen Interface
Windows® based

The instrument is equipped with an advanced interface, based on a powerful embedded-PC with a high-resolution, 6.5-inch color display. The touch-screen technology allows the most flexible and intuitive use of the instrument, while the embedded-PC technology provides an open architecture, allowing Ethernet connection to PC Networks (LAN), data exchange through a removable USB and direct printing on standard USB printers. Through the LAN connection hundreds of results can be stored and easily exported to LIMS systems.

More than 100 sets of test parameters and 100 test results can be saved together with additional comment on the test.

The instrument checks whether the hammer is correctly calibrated and used according to the current test parameters.
Testing at Non-Ambient Temperatures

Impact properties are dramatically influenced by temperature. Plastic materials usually show a brittle behavior at low temperatures and a more ductile behavior as the temperature increases. Finding a brittle-ductile transition temperature can be of critical interest for many polymer applications. Comprehensive impact characterization with tests at different temperatures becomes possible with a series of options for the CEAST 9050 pendulum.

Cryobox

Cooling system: Liquid Nitrogen
Temperature range: Ambient to -60°C (-76°F)

Suitable for cooling specimens to the following standards:
- ISO 179
- ASTM D6110
- DIN 53453
- ISO 180
- ASTM D256
- DIN 53753
- ISO 8256
- ASTM D1822
- DIN 50115
- ISO 9854
- ASTM E23
- ISO 7628

The Cryobox is a thermal conditioning cell mounted directly onto the CEAST 9050 and positioned to enclose the specimen vice. This optional system is able to condition up to 11 specimens for below-zero tests. Izod, Charpy, or Tensile Impact vice and clamped specimens are jointly conditioned. Through a separate electrical cabinet for temperature control, it’s possible to set the cryobox inside temperature before impact.
The Cryodispenser is a manual device designed to condition many specimens at different temperatures. Two removable loaders can hold up to 50 specimens each. The automatic specimen ejecting system allows the operator to remove the specimens, one by one, out of the environmental chamber. Once out of the chamber, the specimen is manually positioned on the vice by special pliers. A separate electrical cabinet for temperature regulation and control displays the thermal impact conditions.

**Cryodispenser**

- Cooling system: Liquid Nitrogen
- Temperature range: -70 to 100°C (-94 to 212°F)
- Number of Specimens: Up to 100 over 2 loaders

Designed to hold sample from the following standards:

- ISO 179
- ASTM D6110
- DIN 50115
- ISO 180
- ASTM D256
- ASTM E23

To view our range of accessories please visit: [www.instron.com/accessories](http://www.instron.com/accessories)
The Results Are In...

Do you need to know more than the absorbed energy for your pendulum test? Would seeing the load-time curve help understand your results?

Uninstrumented

Uninstrumented pendulum tests provide the energy taken to break the specimen and allow the impact resistance to be calculated. Different materials may have the same absorbed energy while failing in different ways. This information can only be collected by instrumenting your test.

Instrumented

The addition of an instrumented hammer and Data Acquisition System (DAS) allow the engineer to “see” types of information that were previously unknown, including failure type and ductile-brittle behavior. With instrumentation, the load on the specimen is continuously recorded as a function of time and gives a more complete representation of the test than a single energy value collected during uninstrumented tests.
To acquire the force signal during impact, a strain-gauge sensor bridge is placed inside the striker body. The deformation acting on the striker during impact will be acquired by a separate Data Acquisition System (DAS) as an electric signal, which is directly transformed into a force value. The instrument can be equipped with a miniaturized slip ring to transmit the electric signal with the lowest friction and easiest connection.

**Instrumentation**
Support For The Life Of Your Equipment

When You Need Us, We’re There
Operating with 25 offices in 18 countries and more than 1,200 employees, Instron® has a global infrastructure that is local to you. When you need service and support for your CEAST 9000 Series equipment, we’ll be there. We remain committed to advancing materials and components testing techniques.

Maximize Uptime
The Instron world-class service organization is committed to delivering high-quality installation, calibration, training, maintenance, and technical support throughout the life of your CEAST pendulum impact system. We help to ensure that your impact system is working when you need it.

Quality Standards You Can Trust
Operating under ISO 9001 quality standards and with an extensive list of accreditations, Instron employs a product design philosophy where our customers’ data integrity, safety, and protection of investment are paramount. CEAST pendulum impact systems are designed in accordance with the ISO 13802 standard. We strive to ensure that our customer satisfaction is second to none.
CEAST 9000 Series Specifications

<table>
<thead>
<tr>
<th></th>
<th>CEAST 9050 Manual</th>
<th>CEAST 9050 Motorized</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hammer Energy Range</strong></td>
<td>J ft-lb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5 - 50</td>
<td>0.5 - 50</td>
</tr>
<tr>
<td></td>
<td>0.37 - 36.9</td>
<td>0.37 - 36.9</td>
</tr>
<tr>
<td><strong>Hammer Release</strong></td>
<td>Manual</td>
<td>Pneumatic</td>
</tr>
<tr>
<td></td>
<td>(Pneumatic Optional)</td>
<td></td>
</tr>
<tr>
<td><strong>Hammer Braking</strong></td>
<td>Manual</td>
<td>Pneumatic</td>
</tr>
<tr>
<td><strong>Hammer Recovery</strong></td>
<td>Manual</td>
<td>Motorized</td>
</tr>
<tr>
<td><strong>Hammer Identification</strong></td>
<td>Automatic</td>
<td></td>
</tr>
<tr>
<td><strong>Electrical Supply</strong></td>
<td>100 - 240 V</td>
<td>100 - 240 V</td>
</tr>
<tr>
<td></td>
<td>50 - 60 Hz</td>
<td>50 - 60 Hz</td>
</tr>
<tr>
<td><strong>Compressed Air Supply</strong></td>
<td>bar psi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>72.5</td>
<td>79.8</td>
</tr>
<tr>
<td><strong>Machine Dimensions</strong></td>
<td>mm in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1035 × 430 × 880/1190</td>
<td>1035 × 510 × 1190</td>
</tr>
<tr>
<td></td>
<td>40.8 × 16.9 × 34.6/46.9</td>
<td>40.8 × 20.1 × 46.9</td>
</tr>
<tr>
<td><strong>Machine Weight</strong></td>
<td>kg lbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>220 (330 with 50 J Plate)</td>
<td>270 (380 with 50 J Plate)</td>
</tr>
<tr>
<td></td>
<td>485 (725 with 50 J Plate)</td>
<td>595 (838 with 50 J Plate)</td>
</tr>
<tr>
<td><strong>Safety Guards</strong></td>
<td>Standard</td>
<td>Full Enclosure</td>
</tr>
<tr>
<td></td>
<td>(Full Enclosure Optional)</td>
<td></td>
</tr>
</tbody>
</table>
Americas
Canada +1 905 333 9123
Central America +1 781 575 5000
Mexico +1 781 575 5000
South America +1 781 575 5000
United States +1 800 877 6674/1 781 575 5000

Europe, Middle East, Africa
Africa +44 1494 456815
France +33 1 39 30 66 30
Germany +49 6157 4029 600
Ireland +44 1494 456815
Italy +39 011 9685511
Middle East +44 1494 456815
Netherlands +32 3 454 0304
Nordic Region +44 1494 456815
Spain +34 93 894 7550
Switzerland +41 21 621 54 88
United Kingdom +44 1494 456815

Asia, Australia
Australia +61 3 9720 3477
China +86 21 6215 8568
India +91 44 2 829 3888
Japan +81 44 853 8520
Korea +82 2 552 2311/5
Singapore +65 6774 3188
Taiwan +886 2 572 155/6
Thailand +66 2 513 8751/52

For additional country contacts visit www.instron.com/locations

Global Support that is Local to You

Instron® has a global infrastructure that is local to you and remains committed to being the leader in mechanical testing instrumentation.

For more information on CEAST products visit www.ceast.com

www.instron.com