Our website uses cookies to ensure that we give you the best user experience. By continuing to browse our site, you are agreeing to the use of cookies More Info

Flexure Test

Flexure Test CurveSelect image to enlarge

 

The flexure test method measures behavior of materials subjected to simple beam loading. It is also called a transverse beam test with some materials. Maximum fiber stress and maximum strain are calculated for increments of load. Results are plotted in a stress-strain diagram. Flexural strength is defined as the maximum stress in the outermost fiber. This is calculated at the surface of the specimen on the convex or tension side. Flexural modulus is calculated from the slope of the stress vs. deflection curve. If the curve has no linear region, a secant line is fitted to the curve to determine slope.

Why Perform a Flexure Test?

A flexure test produces tensile stress in the convex side of the specimen and compression stress in the concave side. This creates an area of shear stress along the midline. To ensure the primary failure comes from tensile or compression stress the shear stress must be minimized. This is done by controlling the span to depth ratio; the length of the outer span divided by the height (depth) of the specimen. For most materials S/d=16 is acceptable. Some materials require S/d=32 to 64 to keep the shear stress low enough.

Types of Flexure Tests

Three Point Flexural Test Flexure testing is often done on relatively flexible materials such as polymers, wood and composites. There are two test types; 3-point flex and 4-point flex. In a 3-point test the area of uniform stress is quite small and concentrated under the center loading point. In a 4-point test, the area of uniform stress exists between the inner span loading points (typically half the outer span length).

Typical Materials

Polymers

The 3-point flexure test is the most common for polymers. Specimen deflection is usually measured by the crosshead position. Test results include flexural strength and flexural modulus.

Wood and Composites

The 4-point flexure test is common for wood and composites. The 4-point test requires a deflectometer to accurately measure specimen deflection at the center of the support span. Test results include flexural strength and flexural modulus.

Brittle Materials

When a 3-point flexure test is done on a brittle material like ceramic or concrete it is often called modulus of rupture (MOR). This test provides flex strength data only, not stiffness (modulus). The 4-point test can also be used on brittle materials. Alignment of the support and loading anvils is critical with brittle materials. The test fixture for these materials usually has self-aligning anvils.

Related Information